
cO

i
I,-

<

<
Z

q

z u- :z,:w-_: __

........7_Tz£_--,22s:£.........

NASA TT F-g8

/ _,I' / - -

- /

,,,ri_ILZW :2'::.L..L_ .....

TECHNICAL SLATION

£ [ : "_tCT:'._-j'Z_f"o ---

=

BOUNDARY-LAYER EQUATIO _,:::_.......'_EI2R.,_BOUNDARY CONDITIONS

IN THE CASE OF MOTI ERSONIC VEI.DcrI'IES

IN A MODE_ EFIED GAS

By in

Translated mekhanika,

Institute of of Sciences USSI_,

NATIONAL

WASHINGTON

: ; [ : i£- Z

_: '[ 'L[L Z_[C-: ......

AERONAUTIC ACE

................... :÷....

=

,, ...... _:.-_i,.._!......
- _:........

- %:i;!i_i!2!i_-::'"

. _Z?2':_;:-;:_c-

ADMINISTRATION

May 1960



[ • .

n

k

k

I
R

I

i
!
I

I



Q
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-28

BOUNDARY-LAYER EQUATIONS AND THEIR BOUNDARY CONDITIONS

IN THE CASE OF MOTION AT SUPERSONIC VELOCITIES

IN A MODERATELY RAREFIED GAS*

By Yu. N. Lunkin

In motion at supersonic velocities at great helghts, the

mean free path of the molecules _ will be of the order of

magnitude of the dimensions of the moving body L. We shall

call a gas in which the path length ! is short compared to

a moderately rarefied gas.

Following Prandtl's boundary-layer theory, equations are

derived for a moderately rarefied gas which differ from the

ordinary Prandtl equations by the presence of supplementary

terms that contain higher derivatives of velocity and tempera-

ture; in the equations derived the normal pressure gradient

differs from zero and is expressed by supplementary terms.

The boundary conditions for these equations are found with

the aid of kinetic theory; they are a generalization of Max-

well's /I/ and Smoluchowski's /2/ conditions for motion at a

supersonic velocity. The velocity and height limits of ap-

plicability of the equations derived are set forth.

I. Boundary Layer Equations in Moderately Rarefied Gases. In our com-

putations it will be convenient to employ the equations for rarefied gases in

the form suggested by Chapman /3/; though we should note that Chapman made

Translated from Prikladmaya matematika i mekhanika_ Institute of

Mechanics, Acade W of Sciences USSR, vol. 21, 1957, pP. 597-605.



a mlstake I in calculating P2' the tensor of viscous stresses in the second

approximation.

We shall use the correct expression for P2 and write the equations of

motion for a rarefied gas in full, confining ourselves to the case of plane-

parallel flow (the two-dimensional state) with no external forces present.

We then get two equations:

au= h z _, Jp OP= OP_ (l.l)

_v _v _w _ OP_ OP_

e _-+ _._+pu,_ = _ _ _ (l.2)
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In these equations Pxx' Pxy" and Pyy are _iven by the expressions

I In the final expression for p(2) /tr. fo1" Eq. (6) on p. 265/ the sec-

ond term from the right should be written as follows:

(1)

where the tensor __a Fj----
Oz t P

p

! a (Fa

has the f(,llowing value:

_p

Op

Tslen /4/, citing Chapman's final result ior p(2), did not notice this

mistake; moreover, Tsien's paper contains stil] another mistake. He writes

the second term in Eq. (8) without a line above it.

In the translation of Tsien's paper, not orly were these mistakes left

uncorrected, but a new one was added: the line above the _iJ was left out

in the term for k 3 in Eq. (ll).

The authors who employed Chapman's equaticns /3/, usually taken from

the reference /4/, naturally obtained false results, which were not immedi-

ately apparent because they were solving the geceral problems; they obtained,

for example, the dimensionless form of these equations /5/, the integrals of

one-dlmenslonal motion /6/, etc.
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The expression for P is readily obtained from Eq. (1.3) by substitu-
YY

t£ng _ for x and u for u . a_ {i_ |,2,3,4,5,6) are the constants for definite
models of m_lecula_ xinteraction. For the Maxwellian molecules:

as = --_ 2 _ dr ' as=2, a, = 3 (1.5)

8_ -= 0, as == 37' dl_F _T ' as----8

For molecules that are solid elastic spheres:

8, 1.0|4 -_( ' T &_)= 2 _, _- , %'z"= 1.014-2,

&, -- 0.681, _', -: 0.806 37" ,_ 0.990,
i_ dT

The

ten as :

energy equation for a rarefied gas in two-dimensional flow

a (P_u. + P_u_)a (P=u. + P_u_) ---_

(t.6)

Is writ-

(1.7)



where Pxx' Pxy' and

by the expression

Pyy are given by Eq. (1.3) and (1.4), while qx is given

7f + -_ _ +

.1 ap i_ _ ptJ OUx

+ o,_- -_ + o,-_- + +

(1.8)

The

ting _ for

equations:

expression for qy is obtained from Eq. (1.8) by simply

--xand Uy for Ux. 0i(i = I, 2, 3, 4, 5) are constants

01 ..__(7, p Tp _-'d_) 0,=--458.. 0a=-3

3 T d_)04 = 3, 06 = -_-I 5 -- -_- dT

substitu-

given by the

(1.9)

For Maxwellian molecules _-_T, for molecules that are solid elastic

spheres /_ T_'T---, and for air _' To.lb.

The system of equations (1.1) - (1.4), [1.7), and (1.8), serves as a

basis for securing the boundary layer equation_ of moderately rarefied gases.

We shall employ Prandtl's method.

We shall assume that _ , the thickness of the boundary layer, is small

compared to L, the dimensions of the body, and that the viscosity and inertial

forces in the boundary layer are of the same o:der of magnitude. Then evalua-

ting the magnitude of all the terms in the equltions of motion and of energy

and neglecting terms whose relationship to the rest of the terms is of the

order of ($/L)_ I we get:

(_ _x Oux_ Op aPx.r ¢lPxvp -_-f+u.-_-+u_-_)- _ ,_

0 = -- __pe_ __°Pw

(l.lO)

(1.11)

(1.12)

where

(1.13)



This system (I.I0) - (1.17) is incomplete; we shall supplement it with

the equation of continuity:

_p • -_,_-i- + _ (tin.) + (ou,) = o (1.18)

and by the equation of state In the form of Clapeyron's law:

p = pRT (1.19)

The system of equations (I.I0) - (1.19) of the boundary layer of mode-

rately rarefied gases differs from the ordinary Prandtl equations in having

some additional terms; moreover, in this problem the normal pressure gradient

is not equal to zero. The origin of this may be explained as follows: In

the ordinary Prandtl equations the order of magnitude of the terms in the

equation containing Op/0_ equals puot&/L_ , while in the equation

containing _p/Ox , it is equal to pUo'/L ; their ratio is _/L < 1 ;

but this means that the pressure gradient along the normal to the surface of

the streamlined body is small compared to the longitudinal pressure gradient

and may be written _p/Oy :0 with sufficient accuracy. In the case of rare-

fied gases the order of magnitude of _p/Oy is given by the Barnetta-

Chapman additional terms, which, generally speaking, may be of an order of

magnitude close to the order of magnitude of the principal terms in the equa-

tion for OP/0z (a comparative evaluation of these terms is given below),

so that the equation for 0p/0g may be written in the form of (1.11).

Hence, the rarefaction effect llkewlse results in the pressure within

the boundary layer varying along the normal to the surface of the body,

naturally differing from the pressure existing at the outer boundary of the

boundary layer.

It should be noted that independently of us. Krzywoblocki /7/ recently

employed an analoKous method for simplifying the equations similar to the



Barnetta-Chapmanequations. Theequations employedby him as a basis were

derived in the paper by Wang-Chang and Uhlenbeck /8/, with which we were un-

fortunately unfamiliar. Krzywoblocki retained the terms not only of unit

order, but of the order of thickness of the boundary layer. The equations

he derived are conslderably more complicated than the system (i. I0) - (1.17).

Subsequently Krzywoblockl endeavored to solve his equations /9/, though the

generalized relationships he derived still require further investigation.

2. Region of Applicability of the Equations Derived. Let us compare

the terms additionally considered in the equations of motion and energy with

the principal terms as well as with the terms discarded in the Navier-Stokes'

equation in effecting the transition to boundary layer equations. The ratio

of the additional term to the principal term is of the order of magnitude:

a _.____s_._. a _ _.o P_ff_,,,_, tuo M I (2.1)

where M_uo/a (.a_ is the velocity of sound, and a _ Vtherm).

The order of magnitude of the ratio of the additional term to the dis-

carded term will be:

a [_'[Ouz] O _m _uol" IL
p [_-j: _ _ av p_: _,M_M' (2.2)

Here it has been borne in mind that the viscosity and inertial

forces will be of the same order of magnitude within the boundary layer and,

hence:

au. _ _aux P 1

(2.3)

Thus the ratio of the additional terms to the principal terms will

be of the order of magnitude of MI/L, and will be M 2 with respect to the

terms discarded in the theory of the boundary laFer. Bearing in mind fur-

ther that in conformity with (2.3):

MI/L<| (2.4)
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since 1/_<| (otherwise there is no sense in s>eaking of a boundary layer),

it may be stated that the boundary layer equations for moderately rarefied

gases we have derived are applicable only for M _ i, i.e. for supersonic

flows, and that the terms considered addltlonallF are smaller than the basic

Prandtl terms.

These evaluations of the additional terms enable us to delimit the re-

gion of applicability of the derived equations 11 terms of height and values

of M. The lower boundary for M is given by the Inequality M _> i, and the

upper boundary by M < I0, for high temperature develops in the boundary

layer at M _ I0, which results in dissociation of the gas molecules, not al-

lowed for in the equations derived.

The evaluation in terms of height may be made as follows: the order of



magnitudeof the ratio of the additional terms to the main MI/L; according

to (2.3) the magnitude of MI/L must be at least one order of magnitude small-

er than unity, but If this ratio Is less than 1%, there is no sense in con-

sidering the additional terms. This consideration leads to the inequality:

0.01 < M-_-< 0.1 (2.5)

If we make use of the relationship between _, the mean free path of

the molecules, and H, the height, taken from references (I0) and (Ii), we get

the following height ranges for given values of M and L:

at L == t00 _,,

M== 1 2 3 4 5 7 t0

H _,, == 87 _ I00, 78-94 70-92, 66-91, 65--90, 64--89, 6.%-83

at L _ iO00 c,_ '

M_, f 2 3 4 5 7 fO

H k, M--lCO.--J|,i, 94--fj2. 92--J08, 91_=105, 90--t03, 89--JOf. 83--t00

This shows that for large values of M the additional terms begin to

make themselves felt at lower heights.

To be sure, the boundaries of the region of applicability obtained Qn

the basis of the considerations cited above are highly uncertain, and the

sole criterion of their correctness must be experiment.

3. Boundary Conditions in a Moderately Rarefied Gas. The ordinary

boundary conditions for adhesion do not apply in a rarefied gas; numerous

theoretical and experimental researches indicate that the gas slides over

the surface of tlte body in this case. Let us find the boundary conditions,

allowing for this slippage.

We shall make use of Maxwell's kinetic method, in which the complicated

picture of the interactions between the molecules of the gas and the surface

is replaced by a simplified model, based on two assumptions.

The first assumption is that the molecules of the gas, possessing ran-

dom thermal velocity In addition to their forward velocity in the direction

of flow, can collide with the surface of the body. Then a part o_ of all

the incident molecules are adsorbed at the surface and as the result of some

collisions with the molecules of the body acquire a velocity corresponding to

the velocities in the quiescent gas at the temperature of the body, after

which they are evaporated at these velocities in arbitrary directions with

respect to the surface, while the portion i - o_ is reflected from the sur-

face, i.e., preserving the tangential component of velocity and changing the

sign of the normal component.

The second assumption is that the distribution function of the molecu-

lar velocities close to the wall Is taken to be the same as at a distance

from it. The inadequacy of thls assumption was understood by Maxwell himself,

who pointed out that close to the wall some sort of discontinuity conditions



should exist for the distribution function.

These assumptions yield the following bo,mdary conditions.

For the velocity:

I ,+ o-- _ dux dvt u_,vu/dv u(t a) du. dr, v,vu/dvy + ._ =_

--oo ---00 •

where _ is the velocity of the surface with respect to the gas in contact

with it; f is the distribution function; and v , v , and vz are the compo-
nents of 7he random thermal velocities of the i_ole_ules.

For the temperature:

= +. +o++.io.,+.1
--OD --C0 0 --_o --00 --_

F
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where T is the temperature of the surface;
W

m is the mass of the gas molecules.

Is Boltzmann's constant; and

The only unknown in Eq. (3.1) and (3.2) -s tile distribution function f.

Assigning it some approximate value, we obtain the explicit expression for

velocity and temperature in terms of the hydrocynamic characteristics of flow.

Substituting the distribution function fcr the state of equilibrium

yields the usual boundary conditions:

.=0. T=T_ at _=0 (3.3)

If we substitute a function characterizirg a slight departure from the

state of equilibrium in Eq. (3.1) and (3.2) as the distribution function, the

boundary conditions for velocity and temperature may be written as follows,

after a few transformations:

.,- 2-= . (_.)_ o_+
. 2 "rO" _ at +=0 (3.4)

2 _po] -g ?)- at _=0 (3.5)
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Let us mention in passing that the factor _/_/_ is proportional to

the length of the mean free path of the gas molecules.

Experimental research results confirm the correctness of (3.4) and (3.5)

for motion at subsonic velocities in rarefied gases.

To secure the boundary conditions for motion in a rarefied gas at M _> I,

we make use of the fact that the derivation of the corresponding equations of

motion and energy for a rarefied gas are related to the distribution function in

its third aFproximation , developing Maxwell's method mentioned above, we sub-

stitute f3 in Eq. (3.1) and (3.2).

In view of the fact that the function f^ is not cited in explicit form

in any other paper, we shall take the libert_ of writing it in full here;

-- mrs

vm (0== [2rau=

,' % _"- %/_¢.]+

O_ _ o_91
(3.6)

are func-
Here n is the number of molecules per unit volume while Qik

tions of the second derivatives and of their products with the first deri-

vatives, as follows:

,_ a. "_ _ a,,"_-. / +/': ppT _a= _- + _-y +

+l's_y- _-t,,-._-+.-_-ff.-_- --k,,_,_ _+k,_-p 3.,,Tz +

(3.7)

q13 and Q23 are derived from QI2 by substituting ! for x, and so forth.

. i f.) 0 8T 0. 07"

aT Op 07" Op Op OT )

8 _ _ oo, r°T

"" "--6 _,_- + _-.) --6 ,,,_ _-/., (3.8)
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Q22
forth.

and Q33 are readily secured from (3.8) substituting i for _ and so

Here k i is a constant that differs for dlflerent models of molecular in-
teraction; for the Maxwellian molecules:

kl = k==k, = I, k,= k_----O
(3.9)

while for molecules t_at are solid elastic spheres:

K,=t.0t4, K,=0.227, K==0.806, K4=0.330, Kt=0.842 (3.10)

After calculating several integrals and ma_ing the appropriate trans-

formations, we get:

=-= ,.,(2_ _ % t at y=o (_tt)
u== = 2 -_- av A

,Z _ = T._L a Z 8 ay A at V =0 (3.t2)
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It is evident that when A = I Eq. (3.12) ard (3.13) are transformed in-

to Eq. (3.4) and (3.5), respectively.

It is of some Interest to ascertain the extent to which A differs from

unity. To do this we make use of the expression for the normal pressure gra-

dient (i.ii), writing it for Maxwelllan moleculee; then, from (I.ii), (1.15),

and (1.5), we get:

_=_2F'/_-p _o_j! pT @' P_@'J (3.14)

Integrating (3.14) and making use of the ecuation of state

we get :

P -- Po = "-p- "T -- R a_, T

p = pRT ,

(3.15)

Now we write the expression for A for MaxwEllian molecules; substitu-

ting (3.9) in (3.13) and making use of the equatlon of state, we get:

, ¢,,)']A ,= |-- -_ L_.- --R@, T -_y (3.16)

Comparing (3.15) and (3.16), we find that:
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A = 0._0 + po/r)
(3.17)

i.e. A = I when p = Po' and A = 0.5 when p _ Po" Hence, if Eq. (i.II) is

correct, the value of A is close to unity, varying over a comparatively nar-

row range. It may be expected that A will differ but little from unity for

real gases as well, as the model of Maxwellian molecules satisfactorily de-

scribes their behavior.

Solving the equations of motion and energy for the boundary conditions

(3.11) and (3.12) is an extremely complicated matter, all the more so as we

first must know the distribution of velocity and temperature close to the

surface of the body. The following method of successive approximations may

be Indicated: We solve Eq. (i.I0) - (1.17) for the boundary conditions

(3.4) and (3.5) and obtain the velocity and temperature profiles; and we

again solve Eq. (i. I0) - (I.17), but with the boundary conditions (3.11) and

(3.12). Obtaining more accurate values of velocity and temperature, we sub-

stitute them in A and so forth. This is an extremely laborious job, how-

ever, and it is hardly justifiable; it is much more sensible to make use of

simpler boundary conditions, assuming that A = I.

In conclusion, I wish to thank A. I. Cubanov for setting up this

problem and for his valuable comments during its solution.
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